Evaluation by SEM observation of newly root canal sealer

T. Kawashima¹, Y. Tsujimoto¹, T. Ori², S. Wakamatsu², T. Ikemi², K. Matsushima¹

¹Department of Endodontics, Nihon University School of Dentistry at Matsudo, Chiba, Japan, ²Department of Operative Dentistry, Nihon University School of Dentistry at Matsudo, Chiba, Japan

Objectives:
It is desirable that root canal filling material have adhesive property for root canal wall to prevent from coronal leakage and apical leakage. Adhesive property to root canal wall will decrease the rate of leakage. Conventional resin sealer has high adhesive property to root canal wall, but it needed complicated operation.

MetaSEAL™ (PARKELL, INC., U.S.A., Fig. 1, Table 1) is newly self-etching root canal sealer based on dual-cure resin containing 4-META. The purpose of this study was to evaluate interface between root canal wall and sealer after root canal filling of the teeth which had wide dentinal tubules (around 20 yrs. old) and the teeth which had narrow dentinal tubules (around 50 yrs. old) using scanning electron microscope (SEM).

Fig. 1 MetaSEAL™

Table 1 Specifications

<table>
<thead>
<tr>
<th>Constitution and Composition</th>
<th>Liquid: HEMA, 4-META, dimethacrylate Powder: zirconium oxide, silica amorphous, water-soluble polymerization initiator</th>
</tr>
</thead>
<tbody>
<tr>
<td>Classification</td>
<td>resin root canal sealer</td>
</tr>
<tr>
<td>Pre-treatment</td>
<td>none</td>
</tr>
<tr>
<td>Composition</td>
<td>liquid/powder=3/1</td>
</tr>
<tr>
<td>Operation time</td>
<td>35min.</td>
</tr>
<tr>
<td>Polymerization (Catalyst)</td>
<td>chemical and light cured reaction (water-soluble polymerization initiator)</td>
</tr>
</tbody>
</table>
Methodology:
The extracted single root human teeth were used. We divided them into two groups. The teeth of around 20 yrs. old were classified group 1 (n=5), and the teeth of around 50 yrs. old were classified group 2 (n=5). Crown and pulp were removed before using for the experiment. After enlargement of root canal with Ni-Ti file (K3 #30 06 taper; SybronEndo, U.S.A.), root canal was irrigated with 15%EDTA and 2.5%NaClO for each 1min. (Fig.2,3) to remove smeared layer and was filled with MetaSEAL™ and a gutta-percha point (#30). After keeping in 100% humidity at 37°C for 14 days in the air, specimens were cut for longitudinal of tooth axis. (Fig.4) The specimens were observed each interface of 1,2,3,4 and 5mm from apex between root canal wall and sealer using SEM (JSM-5610LV). (Fig.5)
Results:

SEM observation showed the formation of hybrid layer in all interface in the case of group 1 and 2. In the case of group 1, resin tugs were formed in all interface, but in the case of group 2, resin tugs were not formed in root apex side. (Fig.6-1,2,3, Fig.7-1,2,3)
Fig. 7-1: Root Canal Wall and MetaSEAL®

Group 2: Interface of MetaSEAL® and Root Canal Wall

Fig. 7-2

Fig. 7-3
Conclusions:
Hybrid layer and resin tugs were formed in root canal wall which removed smeared layer. Only hybrid layer in the case of group 2 was formed in calcified dentin. From the above, it was supposed that MetaSEAL™ had high adhesive property to root canal wall.